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Abstract—COVID-19 and pneumonia both affect the human
respiratory system and can cause symptoms ranging from mild
respiratory issues to severe conditions. Radiological imaging
techniques such as X-ray is really effective to diagnose these
diseases. Though these patterns can overlap on a chest X-
ray, pneumonia usually appears as a dense area in one part
of the lung, while COVID-19 often shows up as hazy, cloud-
like areas and scattered spots in both lungs. In this paper, we
worked with a customized dataset which contains 21,000 labeled
chest X-ray images and for classification part several pre-trained
networks such as MobileNet, ResNet (50 and 152 layers) and ViT
were implemented. We used Gradient-weighted Class Activation
Mapping (Grad-CAM) before fully connected layer to generate
heat maps that show the most focused region of the image the
model considers for its prediction. The results of the Ensemble
framework of these transfer learning approaches outperformed
most state-of-the-art models with an accuracy of 0.9956 which
is reliable and robust for classifying thoracic diseases from chest
X-ray images.

Index Terms—Pneumonia and Covid-19, Pre-trained networks,
Chest X-ray images, Grad-CAM

I. INTRODUCTION

Pneumonia is a lung infection that can be serious and some-
times can be potentially life-threatening conditions specially
for young children.According to the World Health Organiza-
tion, 2.5 million pneumonia-related deaths were reported in
2019, with children between the ages of 0 and 5 making up
14% of these deaths. For the elderly, and individuals with
weakened immune systems. The risks associated with pneu-
monia include severe respiratory distress, in some cases, long-
term damage to the lungs[1].The mortality rate for pneumonia
varies widely based on factors such as the patient’s age, overall
health, the type of pneumonia, and the quality and timeliness
of medical care.

COVID-19, caused by the SARS-CoV-2 virus, primarily
affects the lungs, leading to inflammation, fluid buildup,
and lung tissue damage. SARS-CoV-2, a new strain of the
coronavirus, poses a serious threat to global health and has
resulted in significant loss of life. First identified in Wuhan,

China, in 2019, COVID-19 had infected over 507 million
people worldwide by April 2022, with a death toll surpassing
6 million. Countries like the United States, India, Brazil, and
several European nations have been hit hard, due to factors
like healthcare systems, public health measures, population
density, and the emergence of more contagious variants [2].

Pneumonia, which can be caused by bacteria, viruses, or
fungi, also leads to inflammation and fluid accumulation in
the lungs’ air sacs. In both conditions, the inflammation and
fluid interfere with normal breathing and oxygen exchange,
leading to respiratory symptoms like coughing, shortness of
breath, and chest pain. However, in the early stages of COVID-
19, symptoms usually include fever, cough but in severe
cases symptoms can intensify, leading to shortness of breath.
Ground-glass opacities (GGO) are common in COVID-19 but
less frequent in regular pneumonia. In COVID-19, these spots
usually appear on both sides of the lungs and near the edges,
while in pneumonia, they are often found in one specific area
or lobe of the lung. Another difference is that pneumonia tends
to show thicker, more solid lung areas, while COVID-19 has
a more scattered and spread-out appearance.

To detect COVID-19, PCR testing identifies the virus’s
genetic material from a sample, usually collected via a nasal or
throat swab, by replicating the virus’s RNA and transforming
it into DNA. However, the process can be time-consuming,
and some studies have shown a sensitivity of around 90.7%
[3]. On the other hand detecting lung infection through X-
ray images involves identifying specific patterns in the lungs
that are indicative for both pneumonia and Covid-19. Deep
learning models help detect pneumonia and COVID-19 from
chest X-rays by learning to recognize patterns specific to each
condition. These algorithms have gained immense popularity
due to their ability to learn and extract intricate features from
raw image data automatically. They are trained on labeled
images, extract key features, and classify new X-rays as
normal, pneumonia, or COVID-19. Radiologists and AI-based
tools can assist in diagnosing these conditions faster from chest



X-rays.

II. RELATED STUDY

In the paper [4], Gayathri J.L. et al. used a variety of pre-
trained architectures for classification and sparse encoders for
feature selection when working with chest x-ray images to
detect COVID-19. The combination of InceptionResnetV2 and
Xception yielded the best results, with an accuracy of 0.9578
and an AUC of 0.9821. But due to insufficient number of
images in the experiment it can easily fall into overfit, also
didn’t explore multi-class classification. In order to diagnose
between COVID-19 and pneumonia from image data, Linh T.
Duong et al. [5] experimented with lung CT and chest x-ray
images. Differnt versions of Efficient and MixNet were em-
ployed but EfficientNet-B0 (Acc. 96.64%) and EfficientNet-B3
(Acc. 95.82%) outperformsfor other networks on two different
X-ray datasets. Gaffari Celik examined on several transfer
learning models by keeping certain parameters constant on
the same dataset [6] where the proposed model combination
of CovidDWNet+GB(Gradient Boosting) achieved 96.81%
accuracy on chest X-ray images. Xingsi Xue et. al. [7] investi-
gates various deep learning techniques, including ResNet152,
VGG16, ResNet50, and DenseNet121, for detecting COVID-
19, Pneumonia and Normal from CT and radiography images.
An enhanced VGG16 has achieved 99% accuracy and average
F1-score 95%, to recognize three classes of radiographic
images. Using Xception and Visual Geometry Group (16 &
19), Deepak Kumar Jain [8] et al. conducted an experiment to
classify regular, pneumonia, and normal X-ray pictures with an
accuracy of 98%, which was obtained by the Xception model.
Ameer Hamza et al. utilized a technique based on ancanonical
correlation analysis (ICCA) to fuse the selected featurers
after the hyperparameters were established through Bayesian
optimization to categorize COVID-19 and pneumonia from
MRI scan and X-ray images. Following additional tuning
with the tree growth optimization algorithm, classification was
accomplished with MobileNet (MNN) from the X-ray dataset
with an accuracy of 99.6% utilizing ResNet50, InceptionV3,
and MNN. For multi-class classification, Hassaan Malik [10]
et al. introduced a new CNN network called Chest Disease
Classification (CDC), which combines dilated convolution and
residual network concepts. It outperforms other CNN models
(ResNet50, VGG19, and InceptionV3) and obtained an AUC
of 99.53% accuracy for five class classification on twelve
distinct datasets related to chest diseases.

III. METHODOLOGY

A. Dataset and Experiment

Our dataset was generated by combining a multitude of
publicly accessible datasets and repositories, each of which is
dispersed and has a different format. A stringent quality con-
trol procedure guaranteed the dataset’s quality by identifying
and eliminating duplicates, images of extremely low quality,
and overexposed images. X-rays have gradually become more
accessible to the public.Details of different data sources are
given below:

TABLE I
DETAILS OF DATASET 1 AND DATASET 2

Dataset Class CXR/ Class Dataset splitting
Train Validation Test

Dataset 1

Covid 19 7000 4900 1050 1050
Pneumonia 7000 4900 1050 1050

Normal 7000 4900 1050 1050

Dataset 2

Covid 19 1626 1138 244 244
Pneumonia 1800 1249 271 270

Normal 1802 1261 271 270

• COVID-19 Radiography Database [3.1, 3.2]: They have
released 219 COVID-19, 1341 normal, and 1345 viral
pneumonia chest X-ray (CXR) images in the initial
release. The latest database expanded the images includes
3616 COVID-19 positive cases, 10,192 normal cases,
6012 lung opacity (Non-COVID lung infection), and
1345 viral pneumonia images and corresponding lung
masks.

• Chest X-ray (Pneumonia & COVID-19) [3.3]: The chest
X-ray images for this dataset (anterior-posterior) were
selected from retrospective cohorts of pediatric patients
aged one to five years at the Guangzhou Women and
Children’s Medical Center in Guangzhou. The data are
divided into three folders (train, test, value) and includes
subfolders for each image category (Pneumonia/Normal).
There are 5,863 X-ray images (JPEG) and two categories
(Normal/Pneumonia).

• 15K Chest X-Ray Images (COVID-19) dataset [3.4]: The
dataset contains train and test images. There are 200
images each for testing Covid 19 and normal. And the
training directory contains 2158 images for covid 19 and
13.8k images for normal.

• COVID-19+PNEUMONIA+NORMAL Chest X-Ray Im-
age Dataset [3.5, 3.6]: The dataset is a medical image
directory structure divided into three subfolders (COVID,
NORMAL, and PNEUMONIA). It contains chest X-ray
(CXR) images where COVID-19: 1626 images, NOR-
MAl: 1802 images and 1800 images of PNEUMONIA.

Therefore, we modified those datasets to create COVID-
PNEUMOINA-MRI-21k chest X-ray [3.7], which comprises
more than 21,000 CXR images from three distinct classes.

Fig. 1. Sample chest X-ray images from the Pneumonia Covid 21k dataset
for each class



Fig. 2. Block diagram of the multi-class classification of proposed ensemble framework

B. Training Models

1) Deep Transfer Learning Models:
• MobileNetV2: The design of the MobileNetV2, a

lightweight convolutional neural network (CNN), in-
cludes important features that make it both efficient and
effective for image classification. In MobileNet V2, each
block includes a 1x1 expansion layer along with depth-
wise and pointwise convolution layers. The expansion
layer increases the number of channels based on a factor
before sending the data to the depthwise convolution.
Each layer uses batch normalization and ReLU as the
activation function, but the output of the projection layer
doesn’t have an activation function. This version also
includes a residual connection, and the full MobileNet V2
architecture has 17 bottleneck residual blocks [11]. The
depthwise separable convolutions split the convolution
into two distinct operations: depthwise convolution and
pointwise convolution and reduce the architecture cost.

Fig. 3. MobileNet Architecture

• Residual Neural Network: In deeper CNN layers, a com-
mon issue called the vanishing gradient occurs. ResNet
networks solve this by using residual connections. These
connections act as shortcuts, letting information skip
over some layers and go directly to the output. The
key idea is using identity mapping, where the network
learns to fit the residuals by jumping over layers using
shortcut connections[12]. This approach helps ensure that
adding more layers doesn’t hurt performance, allowing

for much deeper networks like ResNet, which can go
up to 152 layers. In terms of depth, ResNet50 has 50
layers, while ResNet152 has 152 layers. ResNet50 has
16 blocks, whereas ResNet152 contains 50 blocks. From
Fig. 4, during the first few training steps, the model
skips the layers with 512 filters and passes through the
X connection. When needed, it uses the layers with 512
filters to capture more complex features. It then combines
the data from the X connection and the weighted layer
FX .

Fig. 4. Residual connection [12]

H(x) = F (x) + x (1)

Where, x is the input to the set of layers, F (x) is the
residual function, and H(x) is the mapping function from
input to output.

2) ViT: The Vision Transformer (ViT) applies the principles
of transformer models, originally used in natural language
processing, to image classification. The Vision Transformer
(ViT) uses ideas from transformer models, which were first
used for language tasks, to classify images. It works by
breaking an image into small square patches, turning them into
flat data, and organizing them into a sequence. This sequence
is then fed into the transformer, where attention mechanisms
help the model understand how different patches of the image
are related. After going through several layers, the output helps



classify the image, with one final piece of data summarizing
the whole image for the classifier to predict its category. ViT
is powerful because it can focus on both the small details and
the bigger picture of the image.

C. Hyperparameters

In Convolutional Neural Networks (CNNs), key settings, or
hyperparameters, include things like the number of convolu-
tional layers, the size of the filters, stride, padding, activation
functions (such as ReLU), learning rate, batch size, number of
training rounds (epochs), and dropout rate. These settings are
important because they influence how well the model learns
and performs. The learning rate decides how fast the model
adjusts its internal parameters, and dropout helps prevent
overfitting by turning off some neurons randomly during
training. In table 2 the hyperparameters are listed which are
worked in the experimented models.

TABLE II
MODELS PARAMETERS FOR INPUT AND CLASSIFICATION STAGE

Parameters Approch
CNN Models Vision Transformer

Input shape 100 × 100 72 × 72
No. of epochs 100 100
Batch Sizes 32 16

Activation Function Softmax Softmax
Learning rate 0.0001 0.0001

patch size - 3
num patches - (72 / 3) × 2

transformer layers - 8

D. Experimental Setup

The hardware for this experiment comprises 8GB Nvidia
GEFORCE RTX 4060 and 16 GB RAM. We built the pre-
trained networks using NumPy, the TensorFlow framework,
Sklearn, the Matplotlib graph charting tool, the Seaborn data
visualization tool, Python 3.10 with the TensorFlow frame-
work.

E. Evaluation Criteria

Accuracy is needed to measure generalperformance of a
network. It is easily interpretable and widely used metric for
model evaluation.

Accuracy =
Number of correct predictions
Total number of predictions

(2)

Precision evaluates how accurately the model identifies pos-
itive cases. It refers to the ratio of correct positive predictions
to the total number of positive predictions made by the model.

Precision =
True Positive

True Positive + False Positive
(3)

While precision shows how good the model is at making
correct positive predictions, recall calculates how many actual
positive cases the model was able to find.

Precision =
True Positive

True Positive + False Negative
(4)

IV. RESULT AND DISCUSSION

GRAD-CAM (Gradient-weighted Class Activation Map-
ping) is a method used in image processing to visualize which
areas of an image a Convolutional Neural Network (CNN)
pays attention to when making predictions. By calculating
a weighted combination of the feature maps from earlier
layers, GRAD-CAM produces a heatmap that highlights the
key regions of the image that influence the model’s decision.

Fig. 5. *****************

Fig. 6. Confution Matrix Best Model and Ensemble

V. CONCLUSION

Early detection is helpful to prevent spreading Covid-19 and
seriousness in pneumonia. Automatic AI based networks and
real-time detection is getting popular but the main limitation
is the limited number of labeled images. To solve the data
imbalance, we build a customized balanced dataset from four
different sources. The experiment result shows the ensemble of
multiple pre-trained and CNN networks has been implemented
which outperforms single pre-trained or ViT networks. This
experiment implemented different models with both balanced
and imbalanced datasets. From the analysis it is shown that the
performances of different architectures are examined by keep-
ing certain parameters constant on the two different datasets



TABLE III
COMPARISON OF MODEL PERFORMANCE ON DATASET 1 AND DATASET 2

Model Class Dataset 1 Dataset 2
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

Mobile Net
Covid-19 0.99 0.99 0.99

0.9914
1.00 0.99 1.00

0.9758Pneumonia 0.99 1.00 1.00 0.99 0.94 0.97
Normal 0.99 0.98 0.99 0.94 1.00 0.97

ResNet 50
Covid-19 0.98 0.99 0.99

0.9883
1.00 1.00 1.00

0.9860Pneumonia 0.99 1.00 0.99 0.98 0.98 0.98
Normal 0.99 0.98 0.98 0.98 0.98 0.98

ResNet 152
Covid-19 0.99 0.98 0.98

0.9876
1.00 1.00 1.00

0.9783Pneumonia 1.00 1.00 1.00 0.97 0.97 0.97
Normal 0.98 0.98 0.98 0.97 0.97 0.97

Custom CNN
Covid-19 0.95 0.96 0.96

0.9638
0.98 0.99 0.99

0.9630Pneumonia 0.99 0.99 0.99 0.96 0.94 0.95
Normal 0.95 0.95 0.95 0.95 0.96 0.96

Ensemble (Except ViT)
Covid-19 0.9943 0.9952 0.9948

0.9956
1.0000 0.9959 0.9979

0.9885Pneumonia 0.9981 0.9990 0.9986 0.9815 0.9852 0.9834
Normal 0.9943 0.9924 0.9933 0.9852 0.9852 0.9852

Visual Transform (ViT)
Covid-19 0.94 0.95 0.94

0.9524
0.94 0.95 0.94

0.9640Pneumonia 0.98 0.99 0.98 0.98 0.99 0.98
Normal 0.94 0.92 0.93 0.94 0.92 0.93

TABLE IV
COMPARISON OF THE PROPOSED ENSEMBLE MODEL WITH OTHER DEEP LEARNING TECHNIQUES USING CHEST X-RAY IMAGES

Reference No. of images Scanning Total Class Used Model Acc Precision Recall F1 ScoreCovid-19 Pneumonia Normal

[8] 504 504 (non-Covid 19) X-ray 3
IceptionNet

0.9578 0.9563 0.9563 0.9563Resnet V2
Xception

[8] 108 6041 8851 X-ray 3 Efficient B3 0.9664 0.968 0.978 0.973
327 7386 10192 Efficient B0 0.9582 0.968 0.958 0.950

[8] 3616 1345 10192 X-ray 4 0.9681 0.980 0.970 0.980COVIDWNET
GB

[8] 1281 1300 1481 X-ray 3 Xception 0.980 0.990 0.930 0.960

[8] 2371 3867 2749 X-ray 5 CDC Net 0.9939 0.9942 0.9813 0.9826

This Paper 7000 7000 7000 X-ray 3 Ensemble 0.9956 - - -

and the best result came from the implemented ensemble
with custom-made COVID-PNEUMOINA-CXR-21k chest X-
ray dataset. .

Early detection plays a crucial role in preventing the spread
of COVID-19 and the severity of pneumonia. AI-based auto-
matic networks and real-time detection systems are becoming
more common, but they face a significant challenge due to
the limited number of labeled images available. To address
this data imbalance, we created a custom, balanced dataset
from four different sources. The results of the experiment
show that an ensemble of multiple pre-trained models and
CNN networks performed better than using a single pre-trained
model or ViT networks. Various models were tested on both
balanced and imbalanced datasets, and the analysis reveals
that the best performance came from the ensemble using the
custom dataset COVID-PNEUMOINA-CXR-21k chest X-ray,
with certain parameters kept constant during the comparison.
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